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Instability of a periodic boundary layer 
in a stratified fluid 
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It has been found that the periodic boundary layer formed on a vertically oscil- 
lating vertical wall bounding a stratified fluid is liable to two distinct modes of 
wavelike instability. In  the first, which arises when the oscillation frequency 
w is lower than 0.7 times the buoyancy frequency N ,  the phase lines are aligned 
horizontally. The second mode, in which the phase lines are aligned at 45” or 
more to the horizontal, becomes dominant as w is increased above 0 .9N.  

In distinction from the unstratified periodic Stokes layer, there appears to 
be, for o in the vicinity of AT, a definite low threshold to the boundary-layer 
Stokes-Reynolds number (defined as Wo/(2wv)h, where W, is the maximum 
vertical wall velocity and 1’ is the kinematic viscosity) above which the instability 
is sustained a t  a detectable level. 

1. Introduction 
There is considerable literature on bhe stability of time-dependent viscous 

shear flows in a homogeneous fluid. Among these studies are Collins (1963), 
Conrad & Criminale (1965) and Groscli & Salwen (1968) to mention but a few. 
Of relevance to the present work are the studies of von Kerczek (1973) and von 
Kerczek & Davis (197.4). These authors carried out both quasi-steady and 
‘exact ’ linear analyses on the stability of the classical Stokes-layer flow, which 
is the flow induced in a semi-infinite body of constant-density fluid by a plate 
of infinite extent oscillating harmonically in is own plane. The quasi-steady 
theory gave a critical Stokes-Reynolds number Wo/(2i~w)*i of 43 or 91 depending 
on the definition of instability while the exact theory predicted stability at  
least up to a Stokes-Reynolds number of 400. Here ?& is the velocity amplitude 
of the oscillating plate, Y is the kinematic viscosity and w is the angular frequency. 
Available experimental evidence, referred to by von Kerczek & Davis (1974)) 
seems to indicate a critical Stokes-Reynolds number of about 250. 

Very little has been reported on the stability of time-dependent boundary 
layers in stratified fluids. Hart (1 97 1) has examined experimentally the stability 
of a stratified fluid bounded by a sloping plane surface oscillating in its own 
plane. He observed the formation of evenly spaced convective plumes and 
suggested that they were associated with density-gradient reversals produced 
by the boundary-layer flow. 

t Their definition of ‘Reynolds number’ is twice ours, i.e., ( ~ W ~ Y O ) ) .  
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Calibration rod 

FIGURE 1. Experimental arrangement. Dimensions in cm. 

This note describes the results of an experiment designed to examine the 
instability of the periodic boundary flow produced by a vertical surface oscillating 
vertically in its own plane and bounding a density-stratified fluid. By using a 
sensitive schlieren system aligned at  right angles to the oscillating surface 
(made of glass) it is observed that there are two distinct modes of instability, 
each producing its own quite regular wave pattern. One of the wave patterns 
has horizontal phase lines parallel to the oscillating plate and will be called 
‘horizontal waves ’, while the other has its phase lines parallel to the glass plate 
but at  a distinct angle to the horizontal and will be called ‘oblique waves’. 
Interest in these phenomena arose from the observation of these boundary- 
layer instabilities when large amplitude internal waves were generated in a 
vertically sided testing tank. 

2. Experimental details 
Reference is made to figure I. The experiments were carried out in a rectangular 

glass tank of length 90.8 cm, width 22.8 cm and height 68.6 cm filled to 60 cm. 
Two plastic tracks were glued to one inside glass wall such that a plane glass 
sheet 38.1 cm wide, 77.5 cm deep and 0.6 cm thick could be positioned by the 
tracks and could be oscillated vertically in its own plane. The glass sheet, when 
in position, was 2 mm from the wall of the tank, a distance small enough to 
maintain parallel flow. The upper end of the glass sheet was connected to a 
d.c. motor in such a way as to give a vertical displacement sinusoidal in time. 
The displacement amplitude and period could be varied continuously. Edge- 
generated turbulence was minimized by fairing the lower edge of the plate. 
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Common salt in water was used to produce a uniform linear density gradient 
whose buoyancy frequency was in the range 27~/10*2-27~/7.46 s-l for various 
experiments. To find the buoyancy frequency of the fluid a horizontal round 
cylinder of diameter 9.5 mm was attached normal to the glass sheet, which was 
oscillated with a frequency w .  By measuring the angle 8 between the emitted 
waves and the horizontal, the buoyancy frequency could be calculated from the 
formula N = @/sin0 
(see Mowbray & Rarity 1967). 

Visual observation of instabilities in the boundary-layer flow was achieved 
by the use of a 12 in. (30.5 cm) f8 schlieren system aligned normal to the plane 
of t'he oscillating glass plate. The image of a horizontal knife edge was refocused 
at  an occluding horizontal edge to maximize the sensitivity of the visualization 
to vertical gradients of density. Resolution was estimated to be 3.5 x 
(gm cc-1 cm-l) cm-l along the light path. 

3. The boundary-layer flow 
Suppose that the fluid system of the experiment in the central region of the 

oscillating glass sheet can be approximated by that of a stratified fluid with 
undisturbed density po = p z  (1 -12) occupying the half-space x > 0 bounded 
by a vertical wall at  r = 0 moving with a vertical velocity Wo sinwt. Then to  the 
Boussinesq approximation the basic boundary layer produced by the oscillating 
wall is described by the equations 

p; a w l a t  = - gp, + p;t' a 2  w/ax2, 

ap,/at + m p O / d z  = 0, j (1) 
W =  W,sinwt a t  x =  0, W-tO as x-tm, 

where p1 is the departure of the density from its undisturbed value, v the kine- 
matic viscosity, g the gravitational acceleration and x and x the horizontal and 
vertical space co-ordinates. Diffusion in the density equation has been neglected 
because the Prandtl number v / K  ( K  = coefficient of salt diffusion) is large, of 
order lo3, and the boundary layer due to salt diffusion has very little effect on 
the much thicker viscous boundary layer. The solution to (1) is 

(2) 
W = W, exp ( - kx) sin (wt + sgn ( N  - w) kz) , 

p1 = ( - p;t' PW,/w) exp ( - kx) cos (wt + sgn ( N  - w) kr) , 

where k = [ (w /2v )  )N2/02--  l l ] b .  Here N = (pg)* is the buoyancy frequency. No 
attempt was made to measure the accuracy of this description but obviously 
when N2/w2 is near 1 the finite extent of the container will restrain the thickness 
of the boundary layer, although (2) predicts that it will become infinite a t  
N2/w2 = 1. In the limit of vanishing density gradient P-t 0, the flow represented 
by (2) reduces to the classical Stokes-layer flow. 

Leaving aside the constraints imposed by the container, the motion is charac- 
terized completely by two dimensionless quantities : the Stokes-Reynolds 
number R = Wo/(2vw)* and the frequency ratio WIN. 

1 
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FIGURE 2. Critical Stokes-Reynolds number as a function of the frequency. 
0, N = 27~17.46 s-l, horizontal wave limit; 9, N = 27~17.46 s-l, oblique wave limit; 
0 ,  N = 3n/10.1 s-l, horizontal wave limit; +, N = 2n/10.1 s-l, oblique wave limit. 
The solid line is a subjectively fitted curve. 

4. Experimental results 
Two distinct modes of instability were observed, one giving rise to horizontal 

waves and the other producing waves with phase lines at  an angle to the hori- 
zontal. A striking feature of the disturbances was their regularity, both in space 
and time, at  Stokes-Reynolds numbers slightly above the critical values. 

4.1. Critical Xtokes-Reynolds number 
The critical value R, of R is shown in figure 2 for various values of W I N  when 
N = 2~17.46 s-1 and N = 2T/10*1 s-I. The temperature of the salt solution was 
21 "C and the kinematic viscosity in R was taken as 0.01 om2 s-1. Critical values 
were found by first forcing at  high amplitude till the disturbance was plainly 
visible in the schlieren image and then very carefully and slowly reducing the 
amplitude until it was barely discernible but had not completely disappeared. 
The sharp rate at  which the disturbance weakened with small decreases in 
amplitude gave confidence in the accuracy of this technique. The size of the 
amplitudes examined was restricted by the intrusion of turbulence, generated 
at  the edges, into the region of viewing. On figure 2 open and closed symbols are 
used to identify results from the separate experiments with different density 
gradients. Limiting modes of instability are denoted by differently shaped 
symbols. 

In  the set with the open symbols (N = 2~17.46 a-l) the lowering of the oscil- 
lation amplitude was very gradual, and the scatter is correspondingly small. 
The solid symbols, from an earlier set with N = 277/10.1 s-l, give a slightly 
lower R, over most of the range. This discrepancy may have arisen partly from 
the difficulty in discriminating between waves and a weak residual layering 
beyond the boundary layer, evidently associated with the boundary instability. 
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In both cases the minimum R, was about 6, and occurred with WIN near unity. 
R, increased only gradually as o was reduced until w/N was about 0.5, after 
which the increase was more rapid. For w/N > 1.0 the increase in R, was nearly 
linear. The solid line on the figure has been subjectively fitted to the open 
symbols. 

4.2. Oblique waves 
Oblique waves occurred for frequencies near the natural frequency of the fluid. 
For values of o / N  in the approximate range (0.87, 1.3) only oblique waves were 
ever observed. In  the approximate range (0.7, 0.87) horizontal waves were the 
first to appear but for sufficiently large forcing amplitudes these would evolve 
into oblique waves. The horizontal wave mode reappeared if the amplitude warn 
slowly reduced. Figure 3 (plate 1) is a photograph taken during the transition 
from the horizontal mode to the oblique mode. The oblique mode could exist 
either with just one set of parallel-crested waves or with both positive and 
negative angles to form a hatched or cellular pattern. For w/N 5 0.7 only the 
horizontal mode was observed and increasing the forcing amplitude would only 
cause the regular horizontal waves to become distorted and eventually lead to 
mixing. Figure 4 (plate 1) illustrates a purely horizontal mode. 

The angle of the crests of the oblique waves to the horizontal was observed 
to vary with both the Stokes-Reynolds number and the frequency. With R 
just above the critical value for the oblique waves, and with the frequency in 
the mixed-mode range, i.e. 0.7 < w/N < 0.87, the angles were observed to be 
close to the angle 8 = sin-1 ( W I N ) ,  the characteristic angle of internal waves at  
that frequency. For higher R the hatched pattern became distorted; the angles 
varied in space and time and were generally smaller than at critical values but 
were never observed to be less than 45" (which is the lowest value of 8 = sin-l 
(w /N)  in the mixed-mode range). Throughout the oblique-mode range, i.e. 
0-87 5 w/N 5 1.3, the angles were approximately 60" (the highest value of 
6' = sin-lw/N in the mixed-mode range). Figures 5 and 6 (plate 2) illustrate 
the oblique modes with w/N = 1.25 and 1.0 respectively. In  both cases 

N = 2 ~ / 1 * 4 6  s - ~  

and the amplitude is just greater than critical. Figure 7 (plate 3) shows the large 
amplitude development of an oblique mode. With the forcing maintained the 
pattern became increasingly turbulent. Figures 3-7 are photographs of the 
schlieren image and reveal an elevation view of the density-gradient variations 
integrated through the fluid in the direction normal to the oscillating plate. 
The dark background squares are formed by a 10 x 10 cm reference grid fixed on 
the test tank. The additional line in figures 4-6 is drawn on the oscillating plate 
and shows the vertical displacement of the plate from the central horizontal line. 

4.3. Dominant wavelengths 
Figure 8 gives the average values of the dominant horizontal (A,) and vertical 
(A,) wavelength of the waves, as derived from photographs taken during the 
experiments that gave the results in figure 2. These wavelengths are non- 
dimensionalized by a factor wh-fr and plotted against w / N .  It will be seen that 
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FIGURE 8. Dominant wavelengths of observed instability. Solid symbols, N = 277J10.1 s-l; 
open symbols, N = 27717.46 s-1. a, 0, vertical wavelength A,; m, 0, horizontal wave- 
length Ah. 

in the horizontal wave regime A, remained more or less constant but rose 
abruptly as the mixed, horizontal-oblique wave regime was entered. The hori- 
zontal wavelength of the oblique waves rose less rapidly, consistent with an 
increasing characteristic angle 0. 

The vague resemblance of figures 8 and 2 suggests that the wavelength might 
be dependent on R. A particular dependence which eliminated v would not be 
surprising since, as pointed out by a referee, a vertical scale h can be derived 
from balance between viscous and buoyancy forces, giving h = W, I N 2  - 02) I/N2w. 
Correlations of the form h(w/v ) )  = f ( w / N )  g(R) were attempt,ed but no consistent 
relation could be found, and the misalignment in w/N between the two experi- 
ments is unaccounted for. 

4.4. Periodic history 
The amplitude and phase velocity of the disturbance waves varied through a 
period of oscillation. In the lower frequency range o/iV 5 0.87 and for R not too 
far above critical the evolution of horizontal and oblique waves could be clearly 
followed. On the upward stroke the disturbance became visible just before the 
top of the stroke at  ot = 0 and had a slow downward phase velocityt, which 
continually decreased with time. The disturbance amplitude, determined by the 
degree of contrast in the schlieren image between crests and troughs, reached a 
maximum at about ot = in, after which it decreased and became no longer 
visible at about ot = an, i.e. at  zero displacement of the oscillating wall; see ( 2 ) .  
The evolution was repeated in a similar manner during the other half of the 

t The phase velocity is defined here as the apparent vertical propagation speed of 
horizontal lines of maximum density contrast, as revealed and measured using frame-by- 
frame analysis of cinema records of the schlieren image. 
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FIGURE 9. The measured phase velocity (circles) and instantaneous velocity of main point 
inflexion (dashed line) of horizontal waves as functions of time for the situation N = 2n/ 
10.1 s-l, R = 13.7, w,” = 0.66. 

stroke from wt = &r to wt = $ 7 ~ .  Figure 9 illustrates the phase velocity measured 
from movie films of the experiment for a particular situation in which the dis- 
turbances were horizontal waves. Also indicated is the z-wise velocity of particles 
of fluid occupying the instantaneous point of inflexion [i.e. W(x(W,, = 0)) t ) ]  as 
given by (2). It can be seen that the measured phase velocity is less than, but 
has a qualitative similarity to the velocity of the instantaneous point of inflexion. 
This implies that the disturbances were embedded in the boundary layer and 
were advected to some degree by the flow. 

In  distinction, waves for the upper frequency range w/N 2 0.87 appeared to 
be standing waves, and showed very little translation. They seemed to remain 
stationary and change phase smoothly without discernable periods of obvious 
growth and decay, especially for frequencies above the buoyancy frequency. 
Their disinclination to be advected, regardless of oscillation amplitude, suggested 
that they lay mainly outside the boundary layer. 

5. Concluding remarks 
We have experimentally studied the stability of the boundary layer on a 

vertically oscillating vertical plane wall in a stratified fluid. Two modes of in- 
stability were observed and their occurrence depended on the frequency and 
amplitude of the oscillation. For frequency ratios w/N in the approximate 
ranges (0.3,0.7), (0-7,0.87) and (0.87,1.3) the observed modes of instability 
were, respectively, horizontal waves, horizontal waves becoming oblique waves 
at a higher amplitude and oblique waves. The critical Stokes-Reynolds number 
increased for frequencies away from the natural frequency (figure 2). 
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In  the horizontal wave regime, the vertical wavelength remained at about 
9(v/w)* almost independently of the frequency. For oblique waves both the 
horizontal and vertical wavelengths increased from this value, steeply at first, 
as the oscillation frequency was increased. 

Calculations show the total energy in the flow (kinetic plus potential) for the 
case w < N in a half-period to be a maximum at wt = - 3;. and a minimum at 
ot = $ 7 ~ )  approximately the period during which disturbances are observed 
(see $4.4). Thus, if a decreasing total energy is associated with a decelerating 
flow then disturbances are observed during the decelerating part of the flow. 
For w > N the total energy is a maximum at wt = -@r and a minimum at 
wt = 3;. but, as pointed out in $4.4, there is no obvious period of growth observed 
for this frequency range. 

A comprehensive, numerical, quasi-steady, linear stability analysis, not re- 
ported here, was carried out in an attempt to describe the observed phenomena. 
It was found to describe some features of t,he horizontal mode of instability. In 
particular it predicted quite accurately the observed wavelengths and gave 
positive growth rates during observed growth periods. The analysis proved to 
be completely inadequate in predicting the observed oblique mode. A possible 
explanation for this is that the oblique waves are a consequence of a resonant 
coupling between the oblique mode and the basic flow and that this resonance 
cannot be detected simply by considering a quasi-steady system. Tentatively 
then, it would seem that the horizontal mode is essentially a consequence of 
the basic flow profile, with regard of course to the density stratification, while 
the oblique mode is a consequence of the periodic nature of the boundary-layer 
flow. A definitive examination of this view awaits a full time-dependent analysis 
such as that carried out by von Kerczek & Davis (1974) for the homogeneous 
case. 
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FIGURE 3. A view facing the vertically oscillating plate showing a transition from the 
horizontal mode to the oblique mode. N = 27117.46 s-1, WIN = 0.87. 

FIGURE 4. A vicw facing the w r t  ically oscillating plate showing the horizontal mode of 
instability. Y = 2n/7.46 5 l, u/N = 0.51. 

ROBINSON AND AIcEWAN (Ffmnq p. 48) 
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FIGURE 5 .  A view facing the vertically oscillating plate showing the oblique mode of 
instability. N = 27117.46 s-l, WIN = 1.25. 

FIGURE 6 .  A view facing the vertically oscillating plate showing the oblique 
mode of instability. N = 27117.46 s-l, o/X = 1.0. 

ROBINSON AND McEWAN 
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FIGURE 7 .  A view fhcing the vertically oscillating plate showing the 
large amplitude development of an oblique wave. 

Plate 3 
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